Viskas ape pratybas pateikta nuorodoje:
https://docs.google.com/document/d/1 av8t07do9s-7Wtc8EvSi CVhIZWZ7oFPwN4F66CRg/edit?usp=drivesdk

Operation modulo n : mod.
Pu2.1. $137 \bmod (11)=(5)$
$137=12 \cdot 11)+5$$\quad \begin{gathered}-137 \\ \frac{11}{27} \\ -22\end{gathered} \quad \frac{-41}{0} \frac{-4}{2}$
$2 \bmod 2=0$
$\mathcal{L}=\{\ldots,-3,-2,-1,0,1,2,3,4,5,6, \ldots\}$
$4 \bmod 2=0$
Pvz.2. $n=2: \forall a \in \mathscr{L} \rightarrow a \bmod 2=\{0$ it a even (e)
$a \bmod 2 \in\{0,1\} \quad$ 1, if a odd $(\sigma)-\frac{5}{4} \frac{1}{2}$
$\mathcal{L} \bmod 2=\{0,1\} ; \quad f_{2}=\bmod 2 \rightarrow f_{2}(\mathcal{Z})=\{0,1\}=\mathcal{L}_{2}$
$f_{2}: \mathcal{L} \rightarrow \mathcal{L}_{2}=\{0,1\}$
\mathscr{L}_{2} arithmetic : $\left\langle\mathcal{L}_{2}, \stackrel{\text { XOR }}{\oplus}, \stackrel{\text { AND }}{\&}\right\rangle$

+	e	σ
e	e	σ
σ	σ	e

$\xrightarrow[\sigma \equiv 1]{e \equiv 0}$

XOR
Exclusive OR
$1 \oplus 1=2 \bmod 2=0$

\cdot	e	σ
e	e	e
σ	e	σ

$e \equiv 0$

$\sigma \equiv 1$$\longrightarrow$| $\&$ | 0 | 1 |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 1 | 0 | 1 |

\& AND conjunction

XOR and AND logical operations in Boolean algebra can be illustrated by dartboard game.
Single Boolean variable can be represented by the set of 2 values $\{0,1\}$ or $\{$ Yes,No $\}$ or $\{$ True,False $\}$.
Let \boldsymbol{U} is some universal set containing all other sets (we do not take into account paradoxes related with \boldsymbol{U} now).
Let \boldsymbol{A} be a set in \boldsymbol{U}. Then with the set \boldsymbol{A} in \boldsymbol{U} can be associated a Boolean variable $\boldsymbol{b}_{\boldsymbol{A}}=1$ if area \boldsymbol{A} is hit by missile $\boldsymbol{b}_{\boldsymbol{A}}=0$ otherwise.

For this single variable b_{A} the negation (inverse) operation ${ }^{`}$ is defined:
$\boldsymbol{b}_{\boldsymbol{A}}{ }^{`}=0$ if $\boldsymbol{b}_{\boldsymbol{A}}=1$,
$\boldsymbol{b}_{\boldsymbol{A}}{ }^{`}=1$ if $\boldsymbol{b}_{\boldsymbol{A}}=0$.
Bollean operations are named also as Boolean functions.
Since negation operation/function is performed with the singe variable it is called a unary operation.
$\boldsymbol{\nu}_{A}-1 \boldsymbol{1} \boldsymbol{\nu}_{A}-v$.
Bollean operations are named also as Boolean functions.
Since negation operation/function is performed with the singe variable it is called a unary operation.

There are 16 Boolean functions defined for 2 variables and called binary functions.
Two of them XOR and AND are illustrated below.

Venn diagram of $\boldsymbol{A} \oplus \boldsymbol{B}$ operation.

Venn diagram of $\mathbf{A} \& \mathbf{B}$ operation.

$$
n=3: \quad \mathscr{L} \bmod 3=\mathscr{L}_{3}=\{0,1,2\}
$$

\mathcal{L}_{3} arithmetics: $\mathscr{L} \bmod 3=\mathscr{L}_{3}=\{0,1,2\}$
$\left.\mathcal{J}_{30}=\{0,3,6,9, \ldots\}\right) \bmod 3=0$
$\left.{ }_{31}=\{1,4, \quad 7,10, \ldots\}\right) \bmod 3=1$
$\left.3_{2}=\{2,5,8,11, \ldots\}\right) \bmod 3=2$

\mathcal{I}_{n} arithmetic $(n<\infty): \mathcal{L} \bmod n=\mathcal{L}_{n}=\left\{\frac{10,1,2}{n}, \ldots, n-1\right\} \frac{n}{n} \frac{n}{0} \frac{1 n}{1}$
Let $n=p$ when p is prime; eeg. $p=3,5,7,11, \ldots$
Let $p=11, \quad$ Then $\mathcal{L}_{p}=\{0,1,2,3, \ldots, 10\}$
$\gg p=11$
$p=11$
>> isprime(p)
ans = 1
Number expressed by 4 bits is

>> $a=5$
$a=5$
$\gg b=9$
$b=9$
>> aadb=a+b
We will use orithetic of integers having 28 bits our arithmetic operations with Octave will be 64 bits integers without sign.
aadb $=14$
>> aadbp=$=\bmod (a+b, p)$
aadbp $=3$
\gg amubp $=\bmod \left(a^{*} b, p\right)$
amubp = 1
>> $a=23$

```
> \(n=2^{\wedge} 28-1\)
\(\mathrm{n}=2.6844 \mathrm{e}+08\)
>> \(\mathrm{n}=\) int64(2^28-1)
n = 268435455
```

$a=23$
>> b=16
$\mathcal{I}_{p}=\{0,1,2,3, \ldots, p-1\}$. Let $p=11$ - is prime
$\mathcal{Z} \bmod 11=\{0,1,2,3, \ldots, 10\}=\mathscr{q}_{11} \quad p-1=11-1=10$.
In cryptograghy the set $\mathscr{L}_{p}^{*}=\{1,2,3, \ldots, p-1\}$ is used instead \mathscr{Z}_{11}.

Multiplication Tab.

$\mathrm{Z}_{11}{ }^{*}$

$$
\left.\begin{array}{rrrrrrrrrrrrr}
3 & 3 & 6 & 9 & 1 & 4 & 7 & 10 & 2 & 5 & 8 & 4.3 \bmod 11=12 \bmod 11=1 \\
4 & 4 & 8 & 1 & 5 & 9 & 2 & 6 & 10 & 3 & 7 & 4 \cdot 3 \\
5 & 5 & 10 & 4 & 9 & 3 & 8 & 2 & 7 & 1 & 6 & 4 \cdot 4^{-1} \bmod 11=(4 / 4)=1 \\
6 & 6 & 1 & 7 & 2 & 8 & 3 & 9 & 4 & 10 & 5 & \forall
\end{array}\right\}
$$

$$
\begin{array}{rrrrrrrrrrr}
7 & 7 & 3 & 10 & 6 & 2 & 9 & 5 & 1 & 8 & 4 \\
\hline 8 & 8 & 5 & 2 & 10 & 7 & 4 & 1 & 9 & 6 & 3
\end{array}
$$

$4 * 4^{-1}=\frac{4}{4}=1$
>> $\mathrm{a}=5$;
>> b=9;
$\gg \mathrm{ab}=\bmod (\mathrm{a} * \mathrm{~b}, \mathrm{p})$
$a b=1$
>> b_m1=mulinv(b,p) b_m1 $=5$
$2^{2}=4 \ldots 2^{13}=8192$
$\bmod P$ DEF $g^{x} \bmod p=a ; p-$ is prime. Discret Exponent Func. g-is a generator in $\mathscr{L}_{p}^{*}=\{1,2,3, \ldots, p-1\}_{\xi} g \in \mathcal{Z}_{p}^{*}$.
$\gg x=i n t 64($ randi(10)) W/o Fandom integet x generation with uppet bound 10
$x=4$
>> $g=2$
$\mathrm{g}=2$
>> a=mod_exp (g, x, p)
a = 5
>> g_x=g^x
>> $x=$ int64(randi(2^28-1))
$4: 4=4 / 4=4 * 4^{-1}=1 ; 4^{-1}=1 / 4$

$$
\begin{array}{r}
2 \cdot 6=12 \bmod 11=1) \\
\frac{12}{11} \frac{11}{1} \\
4 \cdot 3 \bmod 11=12 \bmod 11= \\
4 \cdot 4^{-1} \bmod 11=(4 / 4)= \\
4^{-1}=3 \bmod 11 \\
5 \cdot 9=45 \bmod 11=1 \\
5^{-1}=9 \\
4511
\end{array}
$$

