Viskas apie pratybas pateikta nuorodoje:

https://docs.google.com/document/d/1 av8t07do9s-7Wtc8EvSi_CVhIZWZ7oFPwN4F66CRg/edit?usp=drivesdk

XOR and AND logical operations in Boolean algebra can be illustrated by dartboard game. Single Boolean variable can be represented by the set of 2 values {0,1} or {Yes,No} or {True,False}. Let U is some universal set containing all other sets (we do not takke into account paradoxes related with U now). Let A be a set in U. Then with the set A in U can be associated a Boolean variable b_A =1 if area A is hit by missile b_A =0 otherwise.

Nebūtina

For this single variable b_A the negation (inverse) operation ` is defined: b_A `=0 if b_A =1,

```
b_{A} = 1 if b_{A} = 0.
```

Bollean operations are named also as Boolean functions.

Since negation operation/function is performed with the singe variable it is called a unary operation.

Bollean operations are named also as Boolean functions. Since negation operation/function is performed with the singe variable it is called a unary operation.

There are 16 Boolean functions defined for 2 variables and called binary functions. Two of them XOR and AND are illustrated below.

Venn diagram of $A \oplus B$ operation.

Venn diagram of A&B operation.

$$n = 3: \quad \mathcal{I} \mod 3 = \mathcal{I}_{3} = \{0, 1, 2\}$$

$$\mathcal{I}_{3} \text{ arithmetics}: \quad \mathcal{I} \mod 3 = \mathcal{I}_{3} = \{0, 1, 2\}$$

$$\mathcal{I}_{3} = \{0, 3, 6, 9, ...\} \mod 3 = 0$$

$$31 = \{1, 4, 7, 10, ...\} \mod 3 = 1$$

$$32 = \{2, 5, 8, 11, ...\} \mod 3 = 2$$

$$\mathcal{I}_{3} = \{2, 5, 8, 11, ...\} \mod 3 = 2$$

$$\mathcal{I}_n \quad \text{avithmetic } (n < \infty): \mathcal{I}_m \text{ od } N = \mathcal{I}_n = \{ \substack{0, 1, 2, \dots, n-1 \}}_n \xrightarrow{n}_0 \stackrel{1}{\xrightarrow{n}_0}$$

Let
$$n = p$$
 when p is prime; e.g. $p = 3, 5, 7, 11, ...$
Let $p = 11$, Then $Z_p = d0, 1, 2, 3, ..., 10$ }

>> p=11 p = 11 >> isprime(p) ans = 1	Number expressed by 4 bits is $1111 = 1 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{\circ} = 15 = 2^{4} - 1$
>> a=5 a = 5 >> b=9 b = 9 >> aadb=a+b	We will use owithetic of integers having 28 bits Our arithmetic operations with Octave will be 64 bits integers without sign.

aadb = 14	
>> aadbp=mod(a+b,p) aadbp = 3	>> n=2^28-1 n = 2.6844e+08
>> amubp=mod(a*b,p) amubp = 1	>> n=int64(2^28-1)
>> a=23 a = 23	n = 268 435 455
>> b=16	

 $\begin{aligned} \mathcal{I}_{p} &= f_{0}(1,2,3,\dots,p-1), \quad \text{Let } p = 11 - \text{ is prime} \\ \mathcal{I}_{mod 11} &= f_{0}(1,2,3,\dots,n) = \mathcal{I}_{m} \\ p-1 &= 11-1 = 10. \end{aligned}$ In cryptography the set Zp=LL2, 3, ..., p-1] is used instead Zn.

Multiplication Tab. Z ₁₁ *	$2.6 = 12 \mod 11 = 1$
* 1 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 4 5 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
7 8 9 10	7 3 10 6 2 9 5 1 8 4 8 5 2 10 7 4 1 9 6 3 9 7 5 3 1 10 8 6 4 2 5 $f = 45 \mod 11 = 1$
	$\begin{aligned} u &= 4 + 4^{-1} = 1 \\ &= 1 \end{aligned}$
>> a=5; >> b=9; >> ab=mod(a*b,p) ab = 1 >> b_m1=mulinv(b,p) b_m1 = 5	$2^{2}=4$,, $2^{13}=8192$ mod p DEF g^{*} mod $p = a$; p -is prime. g^{-} is a generator in $\mathcal{I}_{p}^{*}=\int_{1}^{1}I_{2}I_{3}I_{1}\cdots,P^{-1}J_{3}^{*}g\in \mathcal{I}_{p}^{*}$.
>> x=int64(randi(10)) x = 4	of Fandom integer & generation with upper bound 10
<pre>>> g=2 g = 2 >> a=mod_exp(g,x,p) a = 5 >> g_x=g^x g_x = 16 >> aa=mod(g_x,p)</pre>	

 $\begin{array}{ll} >> g_x = g^x & \% & g^z \\ g_x = 16 & & & \\ >> aa = mod(g_x,p) & & \% & \alpha & \alpha = g^x & mod \\ aa = 5 & & & & \end{array}$